Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172054, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569950

RESUMO

Nitrous oxide (N2O) emissions from different agricultural systems have been studied extensively to understand the mechanisms underlying their formation. While a number of long-term field experiments have focused on individual agricultural practices in relation to N2O emissions, studies on the combined effects of multiple practices are lacking. This study evaluated the effect of different tillage [no-till (NT) vs. conventional plough tillage (CT)] in combination with fertilisation [mineral (MIN), compost (ORG), and unfertilised control (CON)] on seasonal N2O emissions and the underlying N-cycling microbial community in one maize growing season. Rainfall events after fertilisation, which resulted in increased soil water content, were the main triggers of the observed N2O emission peaks. The highest cumulative emissions were measured in MIN fertilisation, followed by ORG and CON fertilisation. In the period after the first fertilisation CT resulted in higher cumulative emissions than NT, while no significant effect of tillage was observed cumulatively across the entire season. A higher genetic potential for N2O emissions was observed under NT than CT, as indicated by an increased (nirK + nirS)/(nosZI + nosZII) ratio. The mentioned ratio under NT decreased in the order CON > MIN > ORG, indicating a higher N2O consumption potential in the NT-ORG treatment, which was confirmed in terms of cumulative emissions. The AOB/16S ratio was strongly affected by fertilisation and was higher in the MIN than in the ORG and CON treatments, regardless of the tillage system. Multiple regression has revealed that this ratio is one of the most important variables explaining cumulative N2O emissions, possibly reflecting the role of bacterial ammonia oxidisers in minerally fertilised soil. Although the AOB/16S ratio aligned well with the measured N2O emissions in our experimental field, the higher genetic potential for denitrification expressed by the (nirK + nirS)/(nosZI + nosZII) ratio in NT than CT was not realized in the form of increased emissions. Our results suggest that organic fertilisation in combination with NT shows a promising combination for mitigating N2O emissions; however, addressing the yield gap is necessary before incorporating it in recommendations for farmers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38570433

RESUMO

Due to its fibrous structure and high water holding capacity, rock mineral wool (RMW) has boosted the development of hydroponics. Consequently, the amount of waste RMW has also increased tremendously, which has stimulated the research and development of RMW reuse options. In this study, composting and degradability of RMW from hydroponics (gRMW) were tested in combination with different ratios of biowaste compost, including physical and chemical properties of the starting and final materials, and potential ecological hazards of the final product. gRMW had high water holding capacity and low organic matter content, which was easily degradable. Limits of toxic elements according to EU regulation were not exceeded. Degraded gRMW mixtures with compost did not exhibit toxicity to plants or aquatic bacteria and showed intermediate or limited habitat function for earthworms, which preferred the sole gRMW not mixed with compost. Overall, degraded gRMW exhibited parameters of safe soil amendment.

3.
Sci Total Environ ; 923: 171444, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438036

RESUMO

Sewage sludge (SS) is rich in plant nutrients, including P, N, and organic C, but often contains toxic metals (TMs), which hinders its potential use in agriculture. The efficiency of removal of TMs by washing with ethylenediamine tetraacetate (EDTA), in combination with hydrodynamic cavitation (HC) and the usability of washed sewage sludge as fertilizer were investigated. The environmental risk was assessed. During 8 wash batches an average 35, 68, 47 and 45 % of Pb, Zn, Cd and Cu, respectively, as well as 22 and 5 % Mn and Fe were removed from the SS. The process solutions and EDTA were recycled at a pH gradient of 12.5-2, which was achieved by adding quicklime (CaO) and then acidification by H2SO4, so that no wastewater was produced, only solid waste (ReSoil® method). The quality of the recycled process solutions (they remained unsaturated with salts) and the efficiency of the washing process were maintained across all batches. On average, 46 % of the EDTA was lost during the process and was replenished. The initial leachability of EDTA-mobilized Pb, Zn, Cu, Cr and Fe remaining in the washed SS increased 6-, 17-, 3-, 11- and 11-fold, respectively, but not to hazardous levels except for Zn. After washing, P and K remained in the SS, plant-available P increased 3.3-fold, while total N and C were reduced by 20.28 and 2.44 %, respectively. Washed SS was used as fertilizer in the pot experiment. The yield of Brassica juncea did not improve, the uptake of TMs by the plants and the leaching of TMs from the soil were minimal. Our study highlighted the drawbacks and potential feasibility of the new SS washing method.


Assuntos
Metais Pesados , Poluentes do Solo , Esgotos , Metais Pesados/análise , Ácido Edético , Fertilizantes , Hidrodinâmica , Chumbo , Solo , Plantas , Poluentes do Solo/análise
4.
Plants (Basel) ; 10(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199139

RESUMO

A field trial of white cabbage (Brassica oleracea var. Capitata L.) was carried out under the humid temperate climate conditions in Central Slovenia to investigate the effects of calcium ammonium nitrate (0, 180 and 240 kg N ha-1) and gypsum (0 and 40 kg S ha-1) fertilisation on yield, yield quality (nitrate, glucosinolate levels and glucosinolate profile) and nitrogen use efficiency. The highest marketable yield, dry matter yield and nitrogen uptake were obtained at the highest nitrogen fertilisation rate when in combination with sulphur. For this treatment, the nitrogen surplus in the soil after harvesting was lower than for the same nitrogen fertilisation without sulphur application. For the combination N240S40, the sulphur addition significantly increased nitrogen use efficiency, which resulted in reduced nitrate content in the cabbage heads. The chemical forms of glucosinolates showed that 80-85% were aliphatic glucosinolates with the remainder as the indole group. For the aliphatic glucosinolates, significant interactions between nitrogen and sulphur fertilisations were reflected in increased levels of progoitrin and glucoiberin when sulphur was applied at the lower nitrogen fertilisation rates. For the indole group, the levels of glucobrassicin and the indole group itself decreased at higher nitrogen fertilisation rates, independent of sulphur fertilisation.

5.
Front Microbiol ; 11: 568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318044

RESUMO

Agro-ecosystems experience huge losses of land every year due to soil erosion induced by poor agricultural practices such as intensive tillage. Erosion can be minimized by the presence of stable soil aggregates, the formation of which can be promoted by bacteria. Some of these microorganisms have the ability to produce exopolysaccharides and lipopolysaccharides that "glue" soil particles together. However, little is known about the influence of tillage intensity on the bacterial potential to produce these polysaccharides, even though more stable soil aggregates are usually observed under less intense tillage. As the effects of tillage intensity on soil aggregate stability may vary between sites, we hypothesized that the response of polysaccharide-producing bacteria to tillage intensity is also determined by site-specific conditions. To investigate this, we performed a high-throughput shotgun sequencing of DNA extracted from conventionally and reduced tilled soils from three tillage system field trials characterized by different soil parameters. While we confirmed that the impact of tillage intensity on soil aggregates is site-specific, we could connect improved aggregate stability with increased absolute abundance of genes involved in the production of exopolysaccharides and lipopolysaccharides. The potential to produce polysaccharides was generally promoted under reduced tillage due to the increased microbial biomass. We also found that the response of most potential producers of polysaccharides to tillage was site-specific, e.g., Oxalobacteraceae had higher potential to produce polysaccharides under reduced tillage at one site, and showed the opposite response at another site. However, the response of some potential producers of polysaccharides to tillage did not depend on site characteristics, but rather on their taxonomic affiliation, i.e., all members of Actinobacteria that responded to tillage intensity had higher potential for exopolysaccharide and lipopolysaccharide production specifically under reduced tillage. This could be especially crucial for aggregate stability, as polysaccharides produced by different taxa have different "gluing" efficiency. Overall, our data indicate that tillage intensity could affect aggregate stability by both influencing the absolute abundance of genes involved in the production of exopolysaccharides and lipopolysaccharides, as well as by inducing shifts in the community of potential polysaccharide producers. The effects of tillage intensity depend mostly on site-specific conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...